Toxic and Idiopathic diseases

Shannon Martinson, March 2017
http://people.upei.ca/smartinson/
OUTLINE

Normal anatomy & function
Hepatobiliary injury and responses
Manifestations of hepatic failure
Developmental anomalies and miscellaneous lesions
Circulatory disturbances
Metabolic & nutritional disturbances
Infectious diseases of the liver (hepatitis)
Toxin-induced liver diseases
Diseases of uncertain cause
Proliferative lesions of the liver
Diseases of the gallbladder and bile ducts
Mycotic infections may cause:

- Hemorrhagic infarcts
 - Cattle – resulting from mycotic rumenitis

- Granulomatous hepatitis
 - *Blastomyces dermatitidis*
 - *Histoplasma capsulatum*

Yeasts of *Histoplasma* in the cytoplasm of Kupffer cells and macrophages

(c) 2012, Richard M. Jakowski, DVM, PhD, DACVP

Nematodes

Ascaris suum

- Adults live in the intestine of pigs
- Larvae migrate through the liver
 - Tunnel → hemorrhage → eosinophilic infiltration/coagulative necrosis → fibrosis
 - Multifocal fibrosis = “Milk spots”
Nematodes

Dirofilaria immitis

- Fatal vena caval (postcaval) syndrome in heavy infections
 - DIC, Intravascular hemolysis, acute hepatic failure
Cysticercosis

- Adult tapeworm in GIT
- Larval tapeworms (cysticerci) encysted within tissues or on serosal surfaces
- Usually incidental
INFECTIOUS DISEASES OF THE LIVER – PARASITIC INFECTIONS

Cestodes

Echinococcus granulosus

Hydatosis

- Adult tapeworm in canid GIT
 - Larval form encysts in viscera of sheep, also many other species (accidental)
 - Zoonotic – people can get hydatid cysts

Cestodes

Echinococcus multilocularis

Alveolar echinococcosis

- **Adult tapeworm in canid GIT**
 - Larval form encysts in viscera of rodents, also many other species (accidental)
 - Zoonotic – people can get alveolar hydatid cysts

- In Canada, was mostly restricted to the northern tundra and south AB, MB, SK
- A few cases have occurred in Ontario recently in dogs as intermediate hosts

CDC/Dr IKagan
Cholangitis, *Fasciola hepatica*, liver, cow

Trematodes

- *Fasciola hepatica*
- *Fasciola gigantica*
- *Fascioloides magna*
- *Dicrocoelium*
- *Opisthorchis*
- *Platynosum*
Trematodes

- Immature flukes: Hemorrhage/necrosis during migration
 - May activate Clostridial spores if present
- Adults: Cause mechanical/chemical irritation/physical obstruction
 - Fibrosing cholangitis (pipestem liver) - *F. hepatica*
 - Parenchymal cysts and pigment - *F. magna*
Protozoa

Histomoniasis

“Black head”

Histomonas meleagridis

- Turkeys > Chickens
- Typhlitis
- Target-like areas of Hepatic necrosis
- Transmitted in the ova of *Heterakis gallinarum*
** Protozoa **

** Hepatic Coccidiosis **

Eimeria stiedae

- Disease of rabbits
- Coccidia live in biliary epithelial cells
- Proliferative cholangitis

www.askjpc.org/wsc/wsc/images/2008/080403-1
Liver is the most common site of toxic injury because:

- Ingested toxins \rightarrow GIT \rightarrow Liver
- Biotransformation of endogenous / exogenous substances for excretion
 - Bioactivation \rightarrow more toxic
- Predictable or idiosyncratic
- Common Lesions:
 - **Acute**: Hydropic degeneration, lipidosis & necrosis, often **centrilobular**
 - **Chronic**: Fibrosis, biliary hyperplasia and nodular regeneration (= cirrhosis)
Classification of hepatotoxic liver injury

Biotransformation (most common)
- Cytochrome p450 system (in centrilobular area)
- Phase I: Bioactivation – reactive intermediates
- Phase II: Conjugation
- Phase III: Excretion (via bile)

Hepatic injury:
- Stimulation of autoimmunity
- Stimulation of apoptosis
- Disruption of calcium homeostasis
- Canaliculal injury causing cholestasis
- Mitochondrial injury

Hepatoxic Agents
- Toxic plants
- Mycotoxins
- Cyanobacteria
- Chemicals
- Therapeutic agents
• Pyrrolizidine Alkaloid Poisoning
• Alsike Clover
Pyrrolizidine Alkaloid Poisoning

- Occur worldwide
- Pigs > cattle > horses > goats and sheep
- Alkaloids \(\rightarrow \) cytochrome p450 system \(\rightarrow \) Toxic pyrrolic esters
 - Alkylating agents – react with nuclear and cytosolic proteins and nucleic acid: antimitotic
 - Prevent cell division but not DNA synthesis*
- Toxic compound in milk \(\rightarrow \) transferred to neonates
- Acute
- Chronic*

Senecio vulgaris (www.cals.ncsu.edu/plantbiology)

- Common genera:
 - *Senecio*, *Crotalaria*, *Heliotropium*, etc
Pyrrolizidine Alkaloid Poisoning

Lesions

Acute: (rare)
- Centrilobular necrosis

Chronic (common)

Gross
- Small firm finely nodular liver

Histology
- Megalocytosis (antimitotic effect)
- Fibrosis
- Biliary Hyperplasia
- Minimal nodular hepatocyte regeneration
Horses
 - **Chronic** liver disease
 - Photosensitization (2º)

Histo
 - **Portal hepatitis and fibrosis**
 - Biliary hyperplasia

Toxic principle unknown
 - Possibly a mycotoxin
 - “Sooty blotch”
• Aflatoxins
• Phomopsin
• Poisonous mushrooms
Aflatoxins

- 4 major aflatoxins: B1, B2, G1, G2
 - Aflatoxin B1*

Occur in mouldy feed
- Corn, peanuts, cottonseed
 - Pig, poultry/ducks, calves
- Commercial dog food
 - Dogs

Most common in stored feed when temperatures are warm and humid
- Bioactivated (cytochrome p450) in liver
 - *Toxic intermediates bind to DNA, RNA, protein*
- Toxic and Carcinogenic

Aspergillus flavus & A. parasiticus

- Cornell Veterinary Medicine
Acute intoxication
• Dogs
• Centrilobular to massive necrosis, hemorrhage and lipidosis

TOXIN INDUCED LIVER DISEASE - MYCOTOXINS

Diagnosis: Submit food / stomach content / vomit for aflatoxin testing
Chronic intoxication
- Pigs, horses > cattle
- Lipidosis
- Fibrosis
- Biliary hyperplasia
- Mild megalocytosis

Phomopsin

Diaporthe toxica (*Phomopsis leptostromiformis*)

- Grows on lupins
- Chronic damage in cattle, sheep, and horses:
 - Small livers, finely nodular
 - Mitotic abnormalities and fibrosis
 - Photosensitization
Poisonous Mushrooms

- *Amanita phalloides* (Death Cap)
 - Produce toxic cyclopeptides:
 - *Amatoxin*
 - *Inhibits of RNA polymerase II function*
 - One mushroom is sufficient to kill
 - Acute damage:
 - Shrunken hemorrhagic liver
 - Centrilobular to massive lipidosis, necrosis and hemorrhage

Phase I – latent: 6-12 hrs
Phase II – GI signs: 6-24 hrs
Phase III – false recovery: 12 – 24 hrs
Phase IV – hepatic failure: 36-48 hrs

Diagnosis: Test for α-amanitin in serum, urine, gastric content, liver
Cyanobacteria – more like bacteria than fungi
- Grows as blooms on lakes and ponds
- Late summer or early fall
- **Microcystin** (pre-formed toxin)
 - *Inhibits protein phosphatase and causes cytoskeletal damage and cell death*
- Livestock, dogs, and cats
- Signs develop rapidly
 - Diarrhea, Prostration and Death

Microcystis
- **Anabaena**
- **Aphanizomenon**
- **Nodularia**
Lesions
- Acute hemorrhagic gastro-enteritis
- Red swollen liver:
 - Centrilobular to massive necrosis
 - Often die within a few hours
- Chronic liver disease in survivors

Diagnosis: Test gastrointestinal content /vomit or liver for Microcystin
• Xylitol
• White Phosphorus
• Metals
 – Iron
 • Iron dextran in pigs
 • Ferrous fumarate in foals
 – Copper (already covered)

TOXIN INDUCED LIVER DISEASE – HEPATOXIC CHEMICALS

- Vomiting
- Weakness
- Incoordination
- Tremors
- Depression or lethargy
- Seizures / Coma

Xylitol
- Artificial sweetener
- Acute toxicity in dogs – 0.5 mg/kg
- Hyperinsulinemia and marked hypoglycemia
- Centrilobular to massive hepatic necrosis
• Some are predictable
 – Acetaminophen – cats (↓ glucuronyltransferase activity)
• Idiosyncratic reactions – rare individuals affected
 – Usually centrilobular hepatocytes; often via unknown mechanisms
 – Species and individual variation
 • Trimethoprim-sulfonamide - Doberman pinschers
 • Carprofen - Labrador retrievers
 • Anticonvulsants (primidone, phenytoin and phenobarbital) → end stage liver in some dogs
 • Diazepam – acute hepatic failure in some cats
Questions?