Streptococcus & Enterococcus

General

- Characteristics
 - Gram-positive cocci
 - Non-motile
 - Many require serum or blood → usually use blood agar
 - Facultative anaerobic
 - Tolerate oxygen, but many of them grow better anaerobically
 - Grow best at 37°C
 - Colonies are distinctly smaller than those of staphylococci

- Habitat
 - Widely distributed in nature
 - Large numbers in the intestines of all animals as normal flora
 - Most are not disease-producer

Streptococcus

Gram-positive aerobic cocci

Catalase ($2H_2O_2 \rightarrow 2H_2O + O_2$)

Staphylococcus, Micrococcus, Peptidococcus, Pediococcus

Bunch of grapes + berry

Streptococcus, Enterococcus

5'ete: thread +occus: seed or berry

Lancefield test
- Discovered by Rebecca Lancefield in 1933
- Cell wall carbohydrates + group specific anti-serum → observe precipitation
- Lancefield groups
 - e.g. S. pyogenes – group A
 - S. agalactiae – group B

Hemolysis
1. β-hemolysis: complete lysis of blood cells
e.g. group A and B streptococci
2. α-hemolysis: less complete → green zone
e.g. S. suis
3. γ-hemolysis: no zone of hemolysis
e.g. enterococci
Capsule

- Capsule is less likely to be opsonized → prevent phagocytosis
- Group A streptococci have a capsule composed of hyaluronic acid (HA)
 → HA is a major component of extracellular matrix
 → mimics host tissues
 → “not immunogenic”
 → protects from phagocytosis

M protein

- Multifunctional virulence determinant
 - Binds to extracellular matrix proteins (e.g., collagen, fibronectin)
 → mediate adhesion of the organism to the host cell
 - Binds to Fc portion of IgG
 → “antiphagocytic”

Toxins

- Streptolysin O
 - Cholesterol-binding protein
 - Forming pores in the membrane
 - Leukotoxic, attacks RBC, and causes complete hemolysis
 - Very antigenic: measurement of “anti-streptolysin O” is a good indicator of *S. pyogenes* infection in humans
- Hyaluronidase: breaks down hyaluronic acid in tissues

S. pyogenes = Group A streptococcus (GAS)

- A single species in Group A
S. pyogenes = Group A streptococcus (GAS)

- **Reservoir**: Humans (mouth, throat, and vaginal tract)
- **Diseases**
 - Animals: a rare cause of bovine mastitis
 - Humans
 - Pharyngitis (strep-throat): sore throat, high fever
 - Rheumatic fever: arthritis and other signs after 2 to 3 weeks following acute pharyngitis
 - Erysipel: a skin and subcutaneous infection usually of the face
 - Streptococcal gangrene (necrotizing fasciitis):
 - Life-threatening "flesh eating" disease
 - Start with a minor injury → Entry into bloodstream → destruction of large areas of skin → death
 - Unusual degree of pain
 - Surgical removal and antibiotics
 - Rare disease

- **Immunity**
 - M protein vaccines: promising but too many M protein variants
- **Treatment**
 - Penicillin class antibiotics
 - B hemolytic streptococci do not readily develop resistance to penicillin

S. equi ssp. equi (S. equi)

- **Lancefield group C**
- **Growth**
 - B-hemolytic
 - Mucoid colonies (from capsule)
- **Habitats**
 - an obligate parasite of Equidae
 - Present in the upper respiratory tract and occasionally in the reproductive tract
 - Important infection source: clinically affected horses
 - Transmitted by droplet and contact
- **Produce a powerful cytotoxin damaging phagocytic cells**

- **Diseases**: only in horses, donkeys and mules
 - Strangles
 - Usually in horses less than 2 yr old, but horses of all ages are susceptible
 - Starts as an upper respiratory infection with a serious nasal discharge and fever
 - Abscessation of head and neck lymph nodes with painful swelling
 - Compresses airway
 - Interferes with breathing (strangles)
 - The swelling may rupture and produce creamy pus
 - After the rupture, the horse usually recovers
 - Strangles is not usually fatal
 - But! may cause systemic infection "bastard strangles" (eg. abscesses in lungs and brain) which often results in death
S. equi ssp. equi (S. equi)

- Purpura (means “purple”) hemorrhagica
 - Fever, edema, hemorrhages
 - May develop after strangles
 - Immune-mediated inflammation after streptococcal infection
 - Primary lesion: vasculitis and necrosis of blood vessel walls
- Omphalophlebitis (inflammation of the umbilical veins) in foals
- Reproductive tract infections: metritis, not as common as S. zooepidemicus

Immunity
- Good following infection
- Protection is associated with local (the nasal epithelium) production of antibodies against M-protein
- Vaccines: several on the market

Diagnosis
- Bacterial culture of exudate from abscesses or nasal swab samples
- Endoscopic examination of upper respiratory tracts

Treatment
- Penicillin
 - Controversial because antibiotic treatment may prolong the course of disease by preventing the maturation of abscesses

Control
- Infected horses should be physically separated
- Most horses can shed S. equi for 1 month after recovery

Vaccination
- Commercial vaccines are available, which only reduce the severity of infection

S. equi ssp. zooepidemicus

- Lancefield group C
- Hemolysis: wide zone of beta
- Horse is the primary host
 - Commensal of the skin, upper respiratory mucosa and tonsils of horses

Diseases
- Horse: most common agent in wound infections
 - Common secondary invader in respiratory disease
 - Umbilical cord infections (omphalophlebitis)
 - Mastitis
- Mare: common organism in uterine and cervical infections
- Other animals and humans: occasional infections

Vaccination: not normally practiced

S. suis

- Lancefield group D, R, S, and T
 - Single, pairs, or short chains
 - α-hemolytic
 - Among 35 serotypes, types 1 and 2: diseases in animals
 - Type 2: human infection

Reservoirs
- Pigs (asymptomatic carriage as high as 80%)
 - Healthy pigs can carry in the nasal cavities, tonsils, upper respiratory and genital tracts
 - Transmitted nasally or orally
 - Most carriers do not develop diseases
- Isolated from various animals, horses, dogs, cats, birds
S. suis

- **Diseases**
 - Pigs
 - Young pigs are most at risk: arthritis, septicemia, meningitis
 - The organism is indigenous in the vagina
 → infects pigs at birth
 - Older pigs: endocarditis, sudden death
 - Birds: occasionally septicaemia
 - Humans
 - Zoonotic disease: Infection is acquired through exposure to contaminated pigs or pork
 - Meningitis, septicemia, hearing loss

- **Treatment**
 - Amoxicillin and ampicillin

- **Vaccination:** Commercially available but inconsistent results

S. porcinus

- **Group E, P, U, and V**
 - Transmitted orally
 - Highly contagious
- **Reservoirs**
 - Recovered infected pigs are most common source of infection
 → recovered pigs harbor the organism in tonsils
 - Transmit by nose-to-nose and via water and food
- **Diseases**
 - Pigs
 - Cervical lymphadenitis (Jowl abscess): similar to strangles, but clinically less severe
 - Occasionally meningitis, arthritis, or septicemia
 - The disease is rarely observed today
 - Treatment: antibiotics are not effective in eliminating the bacteria
 - Vaccine: a vaccine was available but it was taken off the market

S. dysgalactiae ssp. equisimilis

- **Group C, G, L**
- β-hemolytic

- **Diseases**
 - Pigs
 - Causes metritis and cervicitis
 → spreads to piglets
 → causes suppurative arthritis in pigs (0~6 weeks of age)
 - Horses: pneumonia
 - Dogs: metritis
 - Humans: pharyngitis, bacteremia, endocarditis, other problems

- **Vaccination:** no commercial vaccines

S. canis

- **Group G**
- β-hemolytic

- **Reservoirs**
 - Widely distributed in dogs
 → male genital tract appears to be a natural habitat

- **Diseases**
 - Dogs
 - Tonsillitis, metritis, umbilical infections, wound infections
 - Cats
 - Similar diseases, especially wound infections
Mastitis & Streptococcus

● What is mastitis?
 inflammation of the mammary gland caused by microorganisms

● Clinical mastitis
 - Mild signs: flakes or clots in the milk, slight swelling
 - Severe signs: hot, swollen udder, fever, loss of appetite, death

● Subclinical mastitis
 - No visible signs of disease
 - Somatic cell count (SCC) of the milk ↑
 - Milk production ↓

Mastitis & Streptococcus

● Somatic cell count (SCC)
 - # of leukocytes or epithelial cells/ ml of milk
 - Normal milk: <200,000 cells/ ml of milk
 - Inflammation increases SCC

● California Mastitis Test (CMT)
 - A simple, rapid, and inexpensive test
 - Mix the CMT agent with milk
 → the agent lyases somatic cells
 → release nucleic acid materials
 → form a gel

Mastitis & Streptococcus: S. agalactiae

● General
 - The only member of Group B streptococci (GBS)
 - Used to be the single most important cause of mastitis
 → but this organism has been eliminated from many herds
 - An obligate intramammary pathogen
 → spread by the milking equipment
 → β hemolysis; very small zone of hemolysis

● Diseases
 - Animals
 - Mastitis in dairy cattle, goats and sheep
 - Cause an acute localized mastitis with swelling, abnormal milk, and marked reduction of milk production (agalactia)
 - Humans
 - Ear infections and septicemia in infants and pregnant women
Mastitis & Streptococcus: S. agalactiae

- **Vaccination**
 - No vaccine available
 - Usually, much easier and more economical to eliminate infected cows from the herd

- **Treatment**
 - Intramammary infusion of penicillin, or novobiocin+penicillin

 “S. agalactiae is an intramammary pathogen”

Mastitis & Other streptococci

- **S. dysgalactiae ssp. dysgalactiae (S. dysgalactiae)**
 - Group C
 - α hemolytic
 - Present on the skin and in the mouth
 - gain entry via wounds
 - Cause mastitis in dairy cows
 - Infections occur synergistically with *Arcanobacterium pyogenes*

- **S. uberis and S. parauberis**
 - Cause approximately 14 to 26% of clinical mastitis cases in Canada, and the United States, respectively
 - Environmental contamination and soiling of the udder predispose the infection

S. pneumoniae

- **Important cause of respiratory disease in humans**
 - An obligate human pathogen
 - Respiratory diseases, pneumonia
 - A frequent cause of mortality in humans

 called “Captain of the men of death”

 still a leading cause of human death

<table>
<thead>
<tr>
<th>Lancefield Group</th>
<th>Name</th>
<th>hemolysis</th>
<th>Reservoir</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>S. pyogenes</td>
<td>β</td>
<td>Humans (mouth, throat)</td>
<td>Human: pharyngitis, rheumatic fever, erysipelas</td>
</tr>
<tr>
<td>B</td>
<td>S. agalactiae</td>
<td>β (weak)</td>
<td>Intramammary pathogen</td>
<td>Cattle, goat, sheep: mastitis</td>
</tr>
<tr>
<td>C, G, L</td>
<td>S. dysgalactiae ssp. dysgalactiae</td>
<td>α</td>
<td>Skin, mouth</td>
<td>Cow: mastitis</td>
</tr>
<tr>
<td>S. equi ssp. equi</td>
<td>β</td>
<td>Equine (respiratory tract)</td>
<td>Horse: urangetella, purpura, omphalophlebitis</td>
<td></td>
</tr>
<tr>
<td>S. equi ssp. zooepidemicus</td>
<td>β</td>
<td>Horse (skin, respiratory tract)</td>
<td>Horse: wound infection, mastitis, cervicitis</td>
<td></td>
</tr>
<tr>
<td>C, G, L</td>
<td>S. dysgalactiae ssp. equitennis</td>
<td>β</td>
<td>Pigs: mastitis, cervicitis</td>
<td>Horse: pneumonia</td>
</tr>
<tr>
<td>C, L</td>
<td>S. dysgalactiae ssp. equidae</td>
<td>β</td>
<td>Dog (genital tract)</td>
<td>Dog: tonsilitis, mastitis</td>
</tr>
<tr>
<td>D, R, S,T</td>
<td>S. suis</td>
<td>α</td>
<td>Pig (mostly asymptomatic carrier)</td>
<td>Pig: septicaemia, meningitis, arthritis, endocarditis</td>
</tr>
<tr>
<td>E, P, U, V</td>
<td>S. porcinus</td>
<td>β</td>
<td>Infected pigs (tonsil)</td>
<td>Pig: cervical lymphadenitis</td>
</tr>
<tr>
<td>None</td>
<td>S. uberis</td>
<td>α, γ</td>
<td>Coar: mastitis</td>
<td></td>
</tr>
</tbody>
</table>
S. equi ssp. equi vs S. equi ssp. zooepidemicus

- Fermentation

<table>
<thead>
<tr>
<th></th>
<th>Sorbitol</th>
<th>Trehalose</th>
<th>Lactose</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. equi ssp. equi</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. equi ssp. zooepidemicus</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Mastitic streptococci

- CAMP test: factors from *S. agalactiae* augment hemolytic activity of *S. aureus*

<table>
<thead>
<tr>
<th></th>
<th>CAMP</th>
<th>Esculin hydrolysis on Edwards medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. agalactiae</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. uberis</td>
<td>-</td>
<td>+ (grey)</td>
</tr>
</tbody>
</table>

Enterococcus

- **Characteristics**
 - Enterococcal group D streptococci are classified: common inhabitants of the intestinal tracts of mammals and birds
 - α,γ hemolytic (mostly non-hemolytic)
 - Most likely to be seen single cells or as diplococci
 - cf. streptococci are chains of cells
 - More resistant to heat, salt, and antibiotics than streptococci

Enterococcus

- **Diseases**
 - Humans
 - Urinary tract infections, septicemia, endocarditis
 - Leading cause of hospital-acquired bacteremia
 - Surgical wounds, immunosuppression are associated
 - *E. faecalis*: 80% of enterococcal infections
 - *E. faecium*: more associated with antibiotic resistance
 - VRE: vancomycin-resistant *Enterococcus*
 - Animals
 - *E. durans, E. hirae, E. villorum*: associated with sporadic diarrhea in cats, dogs, calves, and piglets
 - *E. faecalis*: mastitis in cattle, urinary tract infections in dogs