Mycobacterium

- Gram-positive
- Aerobic
- Non-motile
- Non-spore forming
- Grow slowly (pathogenic species usually grow slowly)
 - *M. tuberculosis* & *M. bovis*: 3–8 weeks
 - *M. avium* complex: 2–6 weeks
 - *M. avium* ssp. *paratuberculosis*: ~16 weeks
- Resistant to disinfectants (chlorine and iodine...)
- Susceptible to heat treatment

General

- Gram-positive
- Aerobic
- Non-motile
- Non-spore forming
- Grow slowly (pathogenic species usually grow slowly)
 - *M. tuberculosis* & *M. bovis*: 3–8 weeks
 - *M. avium* complex: 2–6 weeks
 - *M. avium* ssp. *paratuberculosis*: ~16 weeks
- Resistant to disinfectants (chlorine and iodine...)
- Susceptible to heat treatment

Mycobacterial cell wall

- Gram-positive, BUT the high lipid and mycolic acid content of cell walls prevent the uptake of the Gram staining dye → poorly stained

OM

P

IM

Althought mycobacteria are phylogenetically classified as Gram-positive bacteria, their wall is more similar to that of Gram-negative bacteria

Hoffmann C et al. PNAS 2008;105:3963-3967
Acid fastness

- Mycobacterium is poorly stained with Gram staining dyes
- Ziehl-Neelsen (ZN) staining: the cell wall lipids bind the red dye "carbol fuchsin" used in ZN staining
 → remove the dye with a weak acid solution (3% HCl + EtOH)
 → bacteria resistant to acid decolorization are called "acid–fast" or "ZN-positive"

Pathogenicity

- Usually cause chronic infections
- Facultative intracellular parasites
 → Pathogenic mycobacteria efficiently survive within phagocytic cells (mostly macrophages)
 → mycobacteria free in the cytoplasm of the macrophage
 → rupture the macrophage
 → infect adjoining cells
 → leads to the formation of granuloma called a tubercle
 → lesions are often localized in the lungs or liver, but may form throughout the body

Pathogenicity

- Phagosome and lysosome fusion

 - Prevent the acidification of phagosome, and Mycobacterium multiplies in it
 - Prevent the fusion of phagosome and lysosome
M. tuberculosis

- **General**
 - The principal cause of tuberculosis in humans and primates occasionally in dogs and cattle.
 - Most humans are relatively resistant to the development of progressive tuberculosis (less than 10% of infected people develop disease).
 - The disease does not develop rapidly.

- **Disease**
 - Tuberculosis is often pulmonary.
 - Large lesions are developed in the lungs → compromises large blood vessels → death.
 - Can infect any parts of the body (lungs, bones, liver, spleen, brain, and gastrointestinal tract).

M. tuberculosis: Diagnosis

- **Acid-fast staining of sputum**
 - A useful and inexpensive test.
 - Detection of acid-fast rods is "not" a definitive diagnosis of TB because other *Mycobacterium* spp. can be stained.

- **TB skin test**
 - Intradermal injection of tuberculin (extracts of Mycobacteria).
 - If a person has or has had TB
 - Stimulate CD4+ T helper cells
 - Recruit monocytes, macrophages
 - Local inflammation + phagocyte migration
 - Redness & swelling, hardening the area.
 - Takes about 4 weeks to get "+" status.
 - False positive: BCG vaccination gives positive results.
M. tuberculosis

- **Treatment**
 - Most commonly used antibiotics (e.g. penicillin, cephalosporin, tetracycline) are not effective
 - Rifampin + isoniazid (first-line anti-TB medication)
 - Standard anti-TB therapy: taking 1/3 kg of a mixture of anti-TB drugs daily for six months
 - Extensive drug resistant tuberculosis (XDR-TB) is surging
 - Nonhuman primates: treated with drugs used in humans, but with limited success
 - Dogs and cats: euthanized to prevent transmission to humans
 - Cattle: eradicated

- **Vaccination**
 - Attenuated *M. bovis* BCG is the most widely used in humans
 - Vaccination causes false positive reaction in the TB skin test

M. bovis: General

- Share >99% genetic identity with *M. tuberculosis*
- A major cause of tuberculosis in all species of cattle
 - cf. *M. tuberculosis*: primarily a human pathogen
- Causes tuberculosis in most warm-blooded vertebrates, including humans, pigs, cats, horses, primates, dogs, sheep, and goats, but not in birds
- Most animals usually clear the infection

M. bovis: Transmission

- Silent transmission: the organism can spread without any obvious signs of disease
- Transmission is mainly via the respiratory route
 - Inhalation of infectious aerosols from coughing or sneezing animals with tuberculosis, or dust particles
 - Aerosol transmission is effective over short distance (1–2m)
- Cattle density is a significant factor
- Nose-to-nose transmission
- The organism can survive for several months in the environment
- Wildlife reservoirs (eg. deer) are a source of infection for grazing cattle

M. bovis: Pathogenesis

- Inhalation of *M. bovis*
 - *M. bovis* is ingested by pulmonary macrophages
 - Grows in the macrophage
 - Kills the macrophage
 - Forms tubercles
 - May disseminate via the lymph
 - Forms tubercles in the lymph nodes, the liver and spleen
- In some cases, the infection lies dormant for many years
- Stress (e.g. overstocking) and host immune system (e.g. age) are important
M. bovis: consequences of infection

- Inhalation of *M. bovis* (by aerosol)
- Bacteria reach lungs
- Bacteria enter macrophages and reproduce in them
- Granuloma formation
- Spread to blood, organs (generalized tuberculosis)
- *M. bovis* present in mucous, feces, urine, milk
- Bacteria cease to grow; lesion calcifies
- Reactivation
- Effective immunity
- *M. bovis* swallowed
- Aerosol shedding of *M. bovis*
- Fecal shedding of *M. bovis*
- Immune suppression
- Reactivation
- Immune suppression
- Reactivation

M. bovis

- **Immunity**
 - BCG vaccine can be used in cattle
 - Not sufficiently efficient
 - React positively in a tuberculin skin test
- **Diagnosis**
 - Tuberculin test
- **Treatment**
 - Cattle: all infected animals are eradicated

M. avium-intracellularare Complex (MAC)

- **MAC**
 - *M. avium*-intracellulare
 - *M. avium* ssp. *avium* (*M. avium*)
 - ssp. *silvaticum*
 - ssp. *hominisuis*
 - ssp. *paratuberculosis* (*M. paratuberculosis*)
 - *M. paratuberculosis* has not been found in any cases of avian tuberculosis and is often excluded from MAC

- **General**
 - MAC is ubiquitous in distribution; various wild and farm animals, fresh and salt water, soil, etc
 - Responsible for the majority of tuberculosis in birds and pigs
 - They are highly resistant to many of the commonly used anti-mycobacterial drugs → thus, difficult to treat
 - Humans: generally resistant, but affects immunocompromised individuals

Serotypes of MAC and their susceptibility to various spp. of birds and mammals

<table>
<thead>
<tr>
<th>Species</th>
<th>MAC serotypes</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Turkey</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Pheasants</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Wild birds</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Cattle</td>
<td>1, 3, 4</td>
<td>Moderate</td>
</tr>
<tr>
<td>Swine</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Rabbit</td>
<td>1, 3, 4</td>
<td>High</td>
</tr>
<tr>
<td>Man</td>
<td>11 to 20, 23, 25</td>
<td>Low (in healthy individuals); High (in immunocompromised)</td>
</tr>
</tbody>
</table>

Source: Dhama et al. 2011
MAC: Disease

- **Poultry**
 - Cause: avian tuberculosis
 - \(M. \) avium is the most significant cause of avian tuberculosis
 - Source of infection: infected birds, contaminated water, soil, or feed
 - Pathogenesis:
 - The lesions primarily develop in "the intestinal tract" and liver can be disseminated to other organs (the lungs, bones, spleen, etc)
 - Lesions in the intestinal tract may appear as nodules
 -开放和排泄到肠道
 - release large numbers of organisms in the feces
 - but eventually show anorexia, weakness, lameness, decreased egg production, sometimes death
 - Economic losses
 - Diagnosis: tuberculin test (intradermal injection in the wattle, 48 hrs)
 - Treatment: depopulation
 - Vaccination: No vaccines are available for use in birds

M. avium Complex (MAC)

- **Swine (continued)**
 - Diagnosis: skin test (often on the ear)
 - Vaccination: not available
 - Depopulate infected herds
 - Prevention is recommended
 - Do not mix swine and poultry production
 - protect swine from birds!

Swine

- Pigs are susceptible to \(M. \) tuberculosis, \(M. \) bovis, and \(M. \) avium
 - \(M. \) avium is the major cause of swine mycobacteriosis
 - Transmission: infected poultry or pigs, sawdust, soil
 - Swine mycobacteriosis
 - Usually "no clinical signs"
 - not possible to diagnose based on clinical signs
 - Lesions are commonly found in cervical and mesenteric lymph nodes at slaughter
 - affected parts (head, intestines, or whole body) should be removed
 - loss of carcasses
 - economic losses

Hosts of mycobacteria

<table>
<thead>
<tr>
<th></th>
<th>(M.) tuberculosis</th>
<th>(M.) bovis</th>
<th>(M.) avium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>+</td>
<td>+++</td>
<td>+/-</td>
</tr>
<tr>
<td>Pig</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sheep</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Horse</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Dog</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Chicken</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
</tbody>
</table>

Positive skin test

Positive for TB test

You chicken, Get away!
Other mycobacteria of clinical importance

- **M. leprae**
 - Cause of leprosy in humans and armadillos
 - Humans: the organism is confined to the skin and peripheral nerves
 - Armadillos: the organism is found systemically

- **M. lepraemurium**
 - Rats and cats: infrequently produce an leprosy-like disease

- **M. kansasii**
 - Cattle, deer, and swine: lymph node lesions infections are difficult to distinguish from *M. bovis* in cattle
 - Humans: respiratory infections and lymphadenitis in people with immunosuppression

Other mycobacteria of clinical importance

- **M. marinum**
 - Humans: “swimming pool granuloma” on the arms and legs
 - Exposure to water containing the organism
 - enter a break in the skin
 - develop reddish nodule
 - Progress slowly (signs are seen 2~3 weeks after infection)

 - Fish: cause fish tuberculosis
 - loss of scales, loss of color, granulomatous lesions in any internal organs
 - once infected, it is really difficult to cure

 - Poikilotherms: cause fatal systemic infections