Corynebacterium

- General
 - Aerobic or facultative anaerobic
 - Catalase positive
 - Non-spore forming
 - Non-motile except C. aquaticum
 (Pathogenic species are non-motile)
 - Pleomorphic rod shaped
 angular clusters resembling "Chinese letters"

- Gram stain
 - Negative ? Positive ?

- Morphology
 - Cocci ? Bacilli (rod)?

- Spore formation
 - Bacillus ← Positive ? Negative ?

- Catalase
 - Positive ? Negative ?

- Motility
 - Listeria ← Positive ? Negative ?

Figure 2.8

C. renale Group

- C. renale, C. cystitidis, C. pilosum → "C. renale group"
 - C. renale is the major

- General
 - Short rods
 - Growth is favored by blood or serum, grows well in sterile urine
 - Rapid "urease" positive: \((\text{NH}_2)_2\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{NH}_3\)

- Habitat
 - Widely distributed in the urethra and prepuce in normal cattle and sheep (considered as normal flora)
 - Opportunistic pathogens

- Transmission
 - May be venereal
 - Possibly indirect transmission (they survive well in soil)
C. renale Group

- The major pathogenic member of the group
- Normal flora of the lower urogenital tract

Cattle
- Infections are almost always in cows (pregnant or postparturient)
- Ascending infection of the urinary tract, cystitis, Pyelonephritis (polyuria, pyuria, hemoglobinuria, enlarged kidney)
- Kidney infection: C. renale

Sheep
- Posthitis (pizzle rot; ulcerative dermatitis of prepuce)
- ↑ Protein (diet) → ↑ Urea (urine) → ↑ Ammonia (by urease)
- ↑ ammonia causes a severe irritation and ulceration of the prepuce (mild irritation to severe inflammation and blockage of the prepuce)
- The organism can venereally spread to ewes, causing inflammation in vagina

Treatment: Penicillin (effective if given early in the disease)

C. pseudotuberculosis

- General
 - Pleomorphic, short rod, coccoid in some isolates
 - Facultative anaerobic
 - Facultative intracellular parasite
 - Two biotypes
 1) ovis – nitrate negative; frequently isolated from sheep and goats
 2) equi – nitrate positive; infecting horses and cattle
 - Both types are isolated from cattle

Transmission
- Commonly found in the skin of sheep and goats
- Pus from infected animals
- Residing in soil
- May enter via wounds or by inhalation

Pathogenesis
- Phospholipase D: an exotoxin associated with spread in the host

C. pseudotuberculosis: In sheep and goats

- Caseous lymphadenitis (inflammation of a lymph node)
 - Also called “cheesy gland”: dryish pus
 - Two forms
 1) Superficial form (abscesses of lymph node)
 - Firm or slightly soft subcutaneous swelling
 - Visible under the skin near the lymph node
 2) Visceral form (abscesses of internal organs)
 - Metastatic lesions
 - Inhalation of the organism → lung infection
Ulcerative lymphangitis (inflammation of a lymphatic vessel)
- Infection occurs in lower limbs
- Usually, only one leg is involved

Pectoral abscesses
- Develop abscesses in the pectoral muscles
 → Swell and resemble a pigeon's chest: “Pigeon fever” (horses)

C. pseudotuberculosis: in horses and cattle

C. pseudotuberculosis

- **Diagnosis**
 - Isolation of *C. pseudotuberculosis*
 - ELISA (detecting phospholipase D)
 - PCR

- **Treatment**
 - Drainage of the abscesses
 - Antibiotic control is not easy:
 - because bacteria stay protected inside abscesses
 - Penicillin may prolong the disease by delaying abscess maturation
 - Usually, antibiotic therapy is not efficient

- **Vaccination**
 - Vaccination is recommended

C. pseudotuberculosis

- **Diagnosis**
 - Isolation of *C. pseudotuberculosis*
 - ELISA (detecting phospholipase D)
 - PCR

- **Treatment**
 - Drainage of the abscesses
 - Antibiotic control is not easy:
 - because bacteria stay protected inside abscesses
 - Penicillin may prolong the disease by delaying abscess maturation
 - Usually, antibiotic therapy is not efficient

- **Vaccination**
 - Vaccination is recommended

C. diphtheriae

- **Human pathogen**
 - Diphtheria: Upper respiratory infection especially in kids under 4 yrs
 → respiratory obstruction
 → High mortality: 30~50%

- **Diphtheria toxin**
 - Prevents protein synthesis → cause cell death
 - Associated with bacteriophage encoding the toxin (tox+)

- **Vaccination:** DPT (Diphtheria-Pertussis-Tetanus)
 - routine vaccination program in developed countries
 - only 10% of children in developing countries
 → (1 million deaths per year)

- **Treatment:** Administration of antitoxin is the only successful method
C. ulcerans

- Reservoir: mainly cattle
- Disease
 - Often isolated from bovine mastitis cases
 - Can spread to humans through consumption of unpasteurized milk and milk products, but mostly source of infection is not defined
 - Pharyngitis in humans
- Able to produce diphtheria toxin, when lysogenized by tox-carrying phage → serious illness to unvaccinated individuals

Bacillus

- Gram-positive, large rods
- A large number (>50) of species and widespread in nature, but majority are non-pathogenic
- Endospore formation
- Aerobes or facultative anaerobes, catalase positive
- Majority are motile (except for B. anthracis and B. mycoides)

Identification

- Gram stain
 - Negative
 - Positive
- Morphology
 - Coci
 - Bacilli (rod)
- Spore formation
- Catalase
 - Positive
 - Negative
- Motility
- Listeria
 - Positive
 - Negative
- Corynebacterium
B. anthracis: general

- Cause "anthrax" - A severe disease affecting almost all mammalian species
- Non-motile, non-hemolytic
 - Capsules will form in cultures grown on media containing bicarbonate or serum

B. anthracis: Anthrax

- Cattle and sheep: Herbivores are "highly susceptible"
 - Often developing a rapid and fatal septicemic disease
 - Bloody diarrhea, and bloody discharge from nose, mouth → Sudden death
- Pigs and horses: Moderately susceptible
- Carnivores: Comparatively resistant
- Birds: Almost totally resistant

<table>
<thead>
<tr>
<th>Animal</th>
<th>Disease Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle, sheep</td>
<td>Fatal peracute or acute septicemic anthrax</td>
</tr>
<tr>
<td>Pigs, dogs, cats</td>
<td>Subacute anthrax with edematous swelling in pharyngeal region</td>
</tr>
<tr>
<td>Horses</td>
<td>Subacute anthrax with localized edematous swellings of the head, neck, shoulders, throat</td>
</tr>
</tbody>
</table>

B. anthracis: Anthrax

- Cattle, sheep: Fatal peracute or acute septicemic anthrax
- Pigs, dogs, cats: Subacute anthrax with edematous swelling in pharyngeal region
- Horses: Subacute anthrax with localized edematous swellings of the head, neck, shoulders, throat

B. anthracis: Endospore

- Endospore formation
 - Important in persistence and spread of anthrax
 - Spores are resistant to heat, acid, etc.
 - Spores of B. anthracis can survive more than 50 years!

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germination</td>
<td>Spores in soil</td>
</tr>
<tr>
<td>Septicemia</td>
<td>Host death</td>
</tr>
<tr>
<td>Toxemia</td>
<td>Spread of spores</td>
</tr>
</tbody>
</table>

Humans

1. Malignant carbuncle: cutaneous anthrax
 - the organism is introduced through a wound
 → develop dark painless lesions
 → if not treated
 → bacteremia and death

2. Gastroenteritis
 - Rare, but from eating infected carcasses

3. Woolsorter’s disease: respiratory form
 - Inhalation of spores by those who handle hides, wool, and hair from infected animals
 - Preferred route for biowarfare
B. anthracis: Virulence Factors

- Two large plasmids (pX01 and pX02) carry the genes for anthrax toxins and capsule

![Diagram of plasmids and toxins]

B. anthracis: Anthrax toxins

- **Protective antigen (PA)**
 - Transports toxin components to the host cell cytosol
- **Edema factor (EF)**
 - Adenylate cyclase (ATP → cAMP)
 - cAMP ↑ → accumulation of fluids → edema
- **Lethal factor (LF)**
 - LF is a protease
 - Proteolytically cleaves MAPKKs, intracellular signaling proteins → causing cell death
 - Inhibit the regulation of immune response

![Diagram of toxin mechanisms]

B. anthracis: Capsule

- **Virulence factors**
 - “Polypeptide” capsule (poly-D-glutamic acid)
 - cf. capsule is usually “polysaccarides”

![Image of capsule and surface proteins]

- **Resistance to phagocytosis**
 - Unencapsulated bacilli are more susceptible to phagocytosis

B. anthracis: Diagnosis

- **Performing necropsies on animals dead of anthrax is “undesirable”** since exposing the tissues to the atmosphere will result in the formation of large numbers of spores → may contaminate the environment for many years

- **Aspirate the aqueous/blood discharge for culture**
 - *B. anthracis* grows readily on blood agar (non-hemolytic)
 - Produces capsules on BHI agar containing 0.5% sodium bicarbonate incubated in 10-30% CO₂

- **PCR**
 - To detect genes encoding the toxins and the capsule
B. anthracis: Prevention and Treatment

- **Vaccination**
 - Spore vaccines and avirulent nonencapsulated strain were used successfully
 - Use of the vaccine in livestock has declined markedly due to the decreased incidence

- **Antibiotics**
 - Penicillin: effective
 - Tetracycline
 - Ciprofloxacin is used in humans

Other pathogenic Bacillus spp.

- **B. cereus**
 - **Human**: Food poisoning often associated with cooked rice held at improper temperatures
 - **Cattle**: Mastitis occasionally
 - **Dogs**: Food poisoning when fed highly contaminated canned food

- **B. licheniformis**
 - Ubiquitous in the environment
 - Associated with abortions in cattle and sheep
 (an opportunistic pathogen)