Clostridium: General

- Obligate anaerobes
- Catalase (-) and oxidase (-)
- Gram-positive (except *C. piliforme*, which is Gram-negative)
- Majority are motile: *C. perfringens* is non-motile
- Large, usually straight rods
- Over 100 species described, and less than 20 are pathogenic
- Form spores
 - Spores are highly resistant
- **Habitats**
 - Intestines: major reservoir
 - Damaged tissue
 - Decaying organic materials
 - Spores persist in soil

Neurotoxic Clostridia

- *C. tetani*
- *C. botulinum*

C. tetani

- **Morphology**
 - Usually a slender rod and single
 - Spores are terminal, bulging the cell: look like drumstick or badminton racket
 - Motile
- **Habitat**: Soil, intestinal tracts, fecal material
- **Infection**
 - Cause of “tetanus”, an acute and potentially fatal intoxication
 - In most cases, the bacteria enter the tissue through wounds, particularly “deep penetrating wounds”
C. tetani: toxins

- C. tetani does not actively invade and multiply
 - Pathogenesis relies solely on "toxin production"

- Tetanospasmin (spasmogenic toxin)
 - It blocks neurotransmitter release at CNS synapse
 - Binds irreversibly to gangliosides on nerve cells

- Hemolysin
 - Produces local necrosis and thereby stimulates the growth of the organism

- Non-spasmogenic toxin
 - Binds to the neuromuscular junction but its function is unknown

C. tetani: tetanus

- Tetanus: the Greek "tetanos", meaning "to contract"
 - Intense, painful muscle contractions

- The organism (spore) enters wounds (deep puncture wounds)
 - Often with soil or contaminating bacteria
 - Necrosis in the surrounding tissues
 - Reduce the oxygen tension (blood can't come)
 - Allow the germination and growth of C. tetani
 - Autolysis of bacterial cells (bacterial death)
 - Toxin is released from the bacteria
 - Toxin enters the nervous system
 - Contraction of skeletal muscles

C. tetani: tetanus

- Incubation period: one to several weeks
- Localized stiffness at the site of the infected wound develops to generalized stiffness

- Species & susceptibility
 - Horses and humans: highly sensitive
 - Ruminants and pigs: moderately susceptible
 - Dogs: relatively resistant
 - Cats: resistant
 - Carnivores: comparatively resistant
 - Poultry: not susceptible to tetanus

C. tetani: tetanus

- Horses
 - Spasms of masticatory tissues → 'lockjaw'
 - Spasms of the neck and back muscle → Extension of the head and neck
 - Generalized stiffness in horses (Stiffness of leg muscles) → 'saw-horse' stance
 - Spasms disturb circulation and respiration → increase heart and respiratory rates

- Sheep, goats, and pigs:
 - Often fall to the ground
- Dogs and cats: localized tetanus near wounds
C. tetani: Treatment

- **Diagnosis**
 - Clinical signs
 - Detection of toxins in the affected animals
 - If the wound is apparent
 → gram staining of bacteria
- **Treatment**
 - Antitoxin
 - Penicillin
 - large doses
 - antibiotic is not very effective after the onset of clinical signs
 - Muscle relaxants help to control muscle spasms
- **Vaccination**
 Toxoid administration is routine in humans, horses, and lambs

C. botulinum: General

- **Morphology**
 - Typical large rod
 - Spores former
- **Seven types of C. botulinum**
 - A, B, C, D, E, F, and G
 based on the antigenic properties of the toxins
- **Habitat**
 - The endospores are distributed in soil and aquatic environments (lake and sea sediments)
 - Dead fish, contaminated meat, fruits, vegetables, honey
 → Food poisoning in humans, domestic animals, and waterfowl

C. botulinum: Botulism

- **Botulinum toxin**
 - The most potent biological toxin known
 - Bacterial cell lysis
 → Release of the toxin
 → The toxin is absorbed into the blood and lymph
 → Carried to the peripheral nervous system
 → Hydrolysis of SNARE proteins
 → Irreversible interference with the release of neurotransmitter (acetylcholine)
 → Flaccid paralysis
- **Clinical signs**
 - Vision disturbance
 - Paralysis of muscles
 - Death results from “paralysis of respiratory muscles”

C. botulinum: Types

- **Types C and D**
 - Cause most outbreaks in domestic animals
 - Outbreaks occur most commonly in waterfowl, cattle, horse, sheep, mink, poultry, farmed fish
- **Type E**
 - The most acute
 - Results in the highest mortality rate
 - Pigs and dogs are relatively resistant
 - Botulism is rare in cats
C. botulinum: Transmission

- Ingestion of "preformed toxins" → causes botulism in animals and humans

- Toxins may be produced in:
 - Decaying carcasses
 - Improperly preserved foods

- Human botulism in the US is most often associated with
 - canned vegetables (particularly canned green beans)
 - to a lesser extent with canned meats
 - honey may contain the spores → causing infant botulism

- Forage poisoning in horses due to ingestion of the toxin in poor quality feed

C. botulinum: Botulism in birds

- Limberneck
 - A term used to describe flaccid paralysis of the neck
 - Affected birds develop flaccid paralysis of the neck
 - Ducks and other aquatic birds that feed on the vegetation at the bottom of ponds and lakes; outbreaks in poultry and waterfowl
 - The buried carcass is rediscovered and ingested by chickens → there are occasional multiple deaths
 - Affected birds may recover without treatment
 - Antibiotic treatment is not successful

C. botulinum

- Ingestion of preformed toxins
- Transmission
- Infection in wounds
- Soil, manure, windblown spores
- Spore biohazard

C. tetani & C. botulinum

<table>
<thead>
<tr>
<th></th>
<th>C. tetani</th>
<th>C. botulinum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major virulence factor</td>
<td>Toxin (tetanospasmin)</td>
<td>Toxin (A~G)</td>
</tr>
<tr>
<td>Transmission</td>
<td>Entry of the organism (spores) into wounds "deep puncture wounds"</td>
<td>Ingestion of feed contaminated with bacteria or preformed toxins</td>
</tr>
<tr>
<td>Type of paralysis</td>
<td>Stiff muscles</td>
<td>Flaccid muscles</td>
</tr>
<tr>
<td>Animal species</td>
<td>Horses, humans, ruminants, pigs...</td>
<td>Birds, humans, ruminants, horses...</td>
</tr>
<tr>
<td>Treatment</td>
<td>Polyvalent antitoxin is available for use in humans</td>
<td>Cost and availability limit the use of antitoxin in animals</td>
</tr>
<tr>
<td>Treatment</td>
<td>Treatment of ducks and mink with type C antitoxin is often successful</td>
<td>Cost and availability limit the use of antitoxin in animals</td>
</tr>
</tbody>
</table>
Histotoxic Clostridia

Clostridial myonecrosis: Gas gangrene

- **Gas gangrene**
 - Clostridia cause tissue necrosis
 - Entry of the organisms into wounds or damaged tissues with foreign objects such as soil
 - Tissue necrosis reduces blood (oxygen) supply:
 - low oxygen promotes germination of the spores
 - The bacteria multiply and produce toxins
 - Clostridia accumulate "gaseous metabolic byproducts" in necrotic tissues
 - thus, called "gas gangrene"

C. chauvoei: General

- **Morphology**
 - Typical large rod
 - Usually singly or in short chains
 - Motile

- **Natural habitat**
 - Intestines of cattle and sheep
 - Exists in the soil as spores

- **Transmission**
 - Tissues and wounds are seeded with spores

- **Disease:** Blackleg in young ruminants especially young cattle

- **Toxins:**
 - α-toxin is lethal, necrotizing and hemolytic
 - δ-toxin is a hemolysin
C. chauvoei: Disease

- **Blackleg**, necrotizing myositis
 - **Main hosts**
 - Cattle and sheep
 - Usually affects calves (3-24 months)
 - High fever, anorexia, lameness, swelling due to "gas accumulation", sudden death
 - Frequently affected large muscle masses of the limbs, back, and neck
- **Diagnosis**
 - Clinical signs and very characteristic postmortem lesions
 - Fluorescent antibody tests
 - PCR
- **Vaccination**: killed vaccines
- **Treatment**: Penicillin in the early stages

C. septicum

- **Braxy**, a hemorrhagic and necrotic abomasitis in sheep
 - Often occur in young sheep
 - Associated with eating frozen grass in winter
 - Frozen food damages localized area in abomasum
 - Spores in abomasum cause disease
 - Edema, hemorrhage, and sometimes necrosis of the abomasum and anterior small intestine
 - High mortality, but rare in Canada and US
- **Toxins**
 1. α-toxin: oxygen-stable hemolysin associated with malignant edema
 2. β-toxin: DNase, leukocidin
 3. γ-toxin: hyaluronidase
 4. δ-toxin: oxygen-labile hemolysis

C. septicum: Diagnosis & Treatment

- **Habitats**: Soil, intestinal contents of animals
- **Cause of malignant edema**
 - an acute, generally fatal toxemia in cattle, horses, sheep, and pigs of all ages
 - Organism enters via wounds
 - Fever and soft swelling around wound
 - Swelling rapidly spreads
 - Gelatinous intermuscular exudates are produced with gas (less gas is produced compared to blackleg)
 - The lesion looks dark brown to black
 - Rapid death when lesions are extensive
- **Diagnosis**
 - Culture of the organism can be done
 - Fluorescent antibody testing of the tissues is rapid and efficient
- **Vaccination**
 - Killed vaccines
- **Treatment**: Penicillin, Tetracycline early
C. novyi: General & Type A

- **Type A**
 - **Bighead**
 - Rams that fight and get head wounds
 - The organism enters via wounds
 - Edema rapidly spreads in the head and neck
 - **Gas gangrene**
 - Cattle, sheep, and humans
 - The organism enters via wounds
 - Legions are similar to those of malignant edema (*C. speticum*)
 - Sudden death

- **Type B & C**

C. novyi: Type B & C

- **Type B**
 - **Black disease** (Infectious necrotic hepatitis)
 - Sheep and occasionally in cattle
 - Characterized by darkening of the underside of the skin due to venous congestion
 - Fatal
 - Dormant spores germinate in liver tissues
 - Disseminate α, β-toxins (cardiotoxic, histotoxic & hepatotoxic)
 - Produce edema, focal hepatic necrosis
 - Liver fluke (*Fasciola hepatica*) predisposes the disease (see type D)
 - Vaccination: Killed vaccines
 - Treatment: Penicillin may be of help but the disease course is very rapid once clinical signs occur

- **Type C: avirulent**

C. novyi type D = C. haemolyticum

- *C. novyi* type D is also called *C. haemolyticum*
- Pathogenesis is similar to type B
 - Hepatitis, intravascular hemolysis, hemorrhage
 - Causes bacillary hemoglobinuria (*"redwater disease"*)
 - Cattle, deer, and sometimes sheep
- Occasionally seen in western Canada

C. haemolyticum: Pathogenesis

- Spores of the organism originate in the intestine, migrate to the liver and remain there in a dormant state
 - The liver fluke (*Fasciola hepatica*) migrates through the liver and creates a favorable environment (necrosis) for the germination of the spores already present
 - The organisms multiply and produce β-toxin
 - The toxin causes hepatic necrosis and is absorbed into the blood
 - Cause massive intravascular hemolysis and capillary damage (lysis of 40-50% of the RBC)
 - Fever, hemoglobinuria; it is called "redwater" disease
- Fatality rate: 90-95%
 - Death is due to anoxemia
C. haemolyticum:

Diagnosis & Treatment

- **Diagnosis:**
 - Culture and toxin demonstration in the liver
 - Inoculation of Guinea pigs with the liver tissue → death in 1-2 days

- **Vaccination:**
 - Killed multivalent vaccines

- **Treatment:**
 - Antiserum and large doses of intravenous penicillin
 - But, no effective treatment

C. sordellii

- **Habitat:** Soil and intestine of domestic animals
- **Causes myonecrosis (gas gangrene)** in cattle, sheep and horses
- **Enters via wounds**
 - Flulike symptoms
 - Edema begins locally and spread rapidly
 - Mostly die rapidly
 - Sudden death

C. perfringens type A

- Cause myonecrosis and gas gangrene

Histotoxic clostridia

<table>
<thead>
<tr>
<th>Species</th>
<th>Major hosts</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. chauvoei</td>
<td>Sheep, cattle</td>
<td>Blackleg</td>
</tr>
<tr>
<td>C. septicum</td>
<td>Sheep, cattle</td>
<td>Malignant edema</td>
</tr>
<tr>
<td>C. novyi type A</td>
<td>Sheep, goats</td>
<td>Wound infections (Bighhead)</td>
</tr>
<tr>
<td>C. novyi type B</td>
<td>Sheep, cattle</td>
<td>Infectious necrotic hepatitis (Black disease)</td>
</tr>
<tr>
<td>C. novyi type D (C. haemolyticum)</td>
<td>Cattle</td>
<td>Bacillary hemoglobinuria (Redwater disease)</td>
</tr>
<tr>
<td>C. sordellii</td>
<td>Sheep, cattle</td>
<td>Myonecrosis, enteritis</td>
</tr>
<tr>
<td>C. perfringens type A</td>
<td>All warm-blooded</td>
<td>Myonecrosis, gas gangrene</td>
</tr>
</tbody>
</table>

To be continued tomorrow!