Listeria

Erysipelothrix

General

- Gram-positive, non-spore forming rods
- Facultative anaerobes
- Grow over a wide temperature range (4 °C to 44 °C) tolerate pH (5.5 ~9.5) and 10% NaCl
- “Widely distributed” in herbage, feces of healthy animals, sewage etc
- Catalase (+), oxidase (-), H₂S (-)
Motility

- **Motile** via peritrichous flagella
 - Monotrichous
 - Lopotrichous
 - Amphitrichous
 - Peritrichous flagella

- **Tumbling motility**

Presumptive Identification

- **Gram stain**
 - Negative ?
 - Positive ?

- **Morphology**
 - Cocci ?
 - Bacilli ?

- **Spore formation**
 - Bacillus
 - Positive ?
 - Negative ?

- **Catalase**
 - Positive ?
 - Negative ?

- **Motility**
 - Positive ?
 - Negative ?

 ➔ Corynebacterium
Listeria species

- **Host range is wide**, with isolates from at least
 - 42 species of mammals + 22 species of birds
 - Others such as ticks, fish, crustaceans

- **Pathogenic**: *L. monocytogenes*, *L. ivanovii*

<table>
<thead>
<tr>
<th>Listeria species</th>
<th>L. monocytogenes</th>
<th>L. ivanovii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep, cattle, goats</td>
<td>Encephalitis, abortion, septicemia</td>
<td>Abortion</td>
</tr>
<tr>
<td>Cattle</td>
<td>Mastitis (rare)</td>
<td></td>
</tr>
<tr>
<td>Dogs, cats, horses</td>
<td>Abortion, encephalitis (rare)</td>
<td></td>
</tr>
<tr>
<td>Pigs</td>
<td>Abortion, septicemia, encephalitis</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>Septicemia</td>
<td></td>
</tr>
<tr>
<td>L. ivanovii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep, cattle</td>
<td>Abortion</td>
<td></td>
</tr>
</tbody>
</table>

L. monocytogenes: Habitat

- **Ubiquitous in nature**
 - Capable of growth over a wide temperature range (4 ºC to 45 ºC)
 - Tolerate high salt

- **Primary habitat**
 - Soil, decaying vegetation (saprophyte)
 - Animal feed, silage, water, fecal material of domestic animals, sewage,, etc.

- **Asymptomatic fecal carriers in humans and many animal species**: About 1% of humans shed *L. monocytogenes*
Listeriosis in Ruminants

- Ingestion of contaminated silage
 - The organism can multiply in silage which has not fermented properly (pH > 5.0)

 Fermentation of silage
 1. To produce more nutrients
 2. Depletion of oxygen
 → Degradation of cellulose and hemicellulose to small sugars
 → Conversion of small sugars to lactic acids by lactic acid bacteria
 → Reduction of pH (about 4)
 3. Affected by oxygen and moisture content

- L. monocytogenes may enter via the nasal mucosa and conjunctivae

Listeriosis in Ruminants

- Encephalitis
 - Circling disease (may circle in one direction) in ruminants
 - Depression, weakness, fever, incoordination, blindness, push against objects, unilateral facial paralysis
 - High mortality (Death in 2-3 days)

- Abortion
 - Listeria may infect the uterus of domestic animals, especially ruminants
 - Mother is asymptomatic and recovers completely

- Ventral form
 - Occur in septicemic listeriosis
 - Small necrotic foci may be found in any organs especially the liver
Listeriosis in Humans

- Do not cause illness in general population
- Risk groups
 1. Pregnant women and their unborn/newborn babies
 2. Immunocompromised individuals
 3. Elderly individuals
- Diseases
 - GI disease, CNS disease, abortion, septicemia
- High mortality (15-40%)
 - Highest percentage of hospitalization among foodborne pathogens: 89.2% (FoodNet 2010, CDC)

Listeriosis in Humans

- Primarily a food-borne illness: zoonotic disease
 - Approximately 2,500 cases in the US annually resulting in 500 deaths
 - *Listeria* outbreak of Maple Leaf Foods in Canada 2008: caused 23 deaths including a death in PEI
Listeriosis: Pathophysiology

[Diagram showing the pathophysiology of Listeriosis, including ingestion of L. monocytogenes, septicemia, bacteremia, placenta, abortion, neonatal septicemia, and involvement in the liver.]

Vázquez-Boland, J.A. et al., 2001
L. monocytogenes: Intracellular life

- Capacity to invade and multiply within host cells including macrophages
- Internalin (InlA): host cell invasion
- Listeriolysin O (LLO): crucial role in escaping from the phagolysosome
- Phosphatidylinositol-specific phospholipase C (PI-PLC): escape from vesicle
- ActA: mediate actin polymerization

Diagnosis and Treatment

Diagnosis

1. Specimens: brain, aborted placenta and fetus
2. Listeriosis is confirmed by isolation of *L. monocytogenes*
 - *Listeria* can be enriched by incubating 4°C: “cold enrichment”
3. Various selective media available

Vaccine

1. Avirulent live vaccines have been used in some countries with reported good protection
2. Vaccination is equivocal since the disease is too sporadic

Treatment

1. Penicillin (the drug of choice), Ceftiofur, Erythromycin, Sulfonamide
2. High doses are required

- Discontinue the use of the particular silage
L. monocytogenes

- Penicillin
- Ceftriaxone
- Silage
- Vegetation
- Human consumption
- Listeria in milk
- Mastitis
- Intestinal colonization
- Soil
- Listeria in meat or from environment
- Septicemia
- CNS infection
- Abortion

L. ivanovii

- Different from *L. monocytogenes*
 - *L. monocytogenes*: wide range of animal species
 - *L. ivanovii*
 - Almost exclusively associated with infections in ruminants, particularly sheep
 - Abortion, enteritis, and neonatal septicemia, but not meningoencephalitis
- Produces a very wide, clear or double zone of hemolysis on sheep or horse blood agar

![L. monocytogenes](image1)

![L. ivanovii](image2)
Characterization

<table>
<thead>
<tr>
<th>Species</th>
<th>Beta-Haemolysis</th>
<th>Nitrate reduction</th>
<th>Acid produced from</th>
<th>Virulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mannitol</td>
<td>Rhamnose</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L. ivanovii</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. innocua</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>L. welshimeri</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>L. seeligeri</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. grayi</td>
<td>-</td>
<td>V</td>
<td>+</td>
<td>V</td>
</tr>
</tbody>
</table>

CAMP test

- Christie, Atkin, and Munch-Peterson

<table>
<thead>
<tr>
<th></th>
<th>Hemolysis enhancement with</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Staphylococcus aureus (S)</td>
<td>Rhodococcus equi (R)</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L. ivanovii</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L. innocua</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. welshimeri</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. seeligeri</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

![Diagram of CAMP test](image)

*: Hemolysis enhancement
CAMP Test

<table>
<thead>
<tr>
<th>S. aureus</th>
<th>R. equi</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. monocytogenes</td>
<td>+</td>
</tr>
<tr>
<td>L. ivanovii</td>
<td>-</td>
</tr>
</tbody>
</table>

Hemolysis enhancement with

- **Biochemical identification**
- **Fluorescent antibody**
- **Nucleic acid**

Various Commercial Kits

- Microbact™ 12L
- MICRO-ID Listeria
- BioControl System
Listeria

Erysipelothrix

- **Gram-positive, slender rods**, tend to become filamentous in old cultures, \(\alpha\)-hemolysis

- **Habitat**
 - Sewage, soil, tonsils and intestines of many animal species, especially pigs, turkeys, sheep and cattle

- Survives for several months in animal tissues such as frozen or chilled meat, smoked ham, and dry blood
 - Survive in swine feces for up to 6 months at \(<12^\circ C\)
 - Resists drying and remains viable in soil many months
Compared with Listeria

- Similar to *L. monocytogenes*. In general, *E. rhusiopathiae* rods are longer

<table>
<thead>
<tr>
<th></th>
<th>Catase</th>
<th>Oxidase</th>
<th>Motility</th>
<th>β-hemolysis</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. monocytogenes</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E. rhusiopathiae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- Only few Gram-positive are H₂S pos
 sulfur+sulfur reductase → H₂S +iron → ferric sulfide (black)

Presumptive Identification

- **Gram stain**
 - Negative ? Positive ?

- **Morphology**
 - Cocci ? Bacilli?

- **Spore formation**
 - Bacillus

- **Catalase**
 - Positive ? Negative ?

- **Motility**
 - Listeria Positive Negative Corynebacterium
E. rhusiopathiae: Diseases

| Pigs | • Route of entry is not known, but associated with wounds
| | • Three basic manifestations can occur in sequence or separately
| | - Acute: Septicemia with acute lameness, high fever, deaths
| | - Sub-acute: Skin form (diamond skin disease)
| | - Chronic form: Endocarditis and arthritis
| Turkeys | • An important disease in turkeys
| | • Enters via fight wounds
| | • Septicemia, arthritis
| | • See more often in males
| Humans | • Cause “erypsipeloid” (non-suppurative)
| | • Enter via wounds, handling infected swine and pork, fishermen from fish
| Lambs | • Polyarthritis
| Dolphins | • Fatal septicemia

Erypsipelas

- An important disease in **pigs and turkeys** and a sporadic disease in many other animals
- A disease mainly in growing pigs (>12 wks) ➔ Economic loss
- Cause, fever, arthritis, and sudden death
- “Diamond-shaped skin lesions” almost anywhere on the body
 - If untreated, the lesion may become necrotic
- Endocarditis: Bacteria within the blood system can cause heart disease
- Arthritis
Erypsipeloid in humans

- *E. rhusiopathiae* causes:
 - “Erypsipelas” in swine and turkeys
 - “Erypsipeloid” in humans – occurring on the hands of individuals who handle infected animals eg. workers on farms and in slaughterhouses, veterinarians
- Enlarged red or purplish swollen area
- Rarely serious or life-threatening

Erysipelothrix rhusiopathiae

- **Diagnosis**
 - Clinical signs – typical diamond-shaped lesions
 - Cultures - organisms can be isolated from skin biopsy
 - ELISA test

- **Vaccination**
 - Routine in swine and turkeys
 - Killed bacterins or attenuated vaccines

- **Treatment:** Penicillin is very effective