Clostridium

Clostridium: General

- Obligate anaerobes
- Catalase (-) and oxidase (-)
- Gram-positive (except *C. piliforme*, which is Gram-negative)
- Majority are motile: *C. perfringens* is non-motile
- Large, usually straight rods
- Over 100 species described, and less than 20 are pathogenic
- Forms pores
 - Spores are highly resistant

Habitats
 - Intestines: major reservoir
 - Damaged tissue
 - Decaying organic material
 - Spores persist in soil
Clostridium Groups

Three Clostridium Musketeers

Neurotoxic Clostridia
- *C. tetani*
- *C. botulinum*
C. tetani

● **Morphology**
 - Usually a slender rod and single
 - Spores are terminal bulging the cell: look like drumstick or badminton racket
 - Motile

● **Habitat:** Soil, intestinal tracts, fecal material

● **Infection**
 - Cause of “tetanus” - acute and potentially fatal intoxication
 - In most cases, the bacteria enter the tissues through wounds, particularly “deep puncture wounds”

C. tetani: toxins

● *C. tatan*i does not actively invade and multiply
 → Pathogenesis rely solely on “toxin production”

● **Tetanospasmin** (spasmogenic toxin)
 - It blocks neurotransmitter release at CNS synapse
 - The toxin binds to gangliosides almost irreversibly

● **Hemolysin**
 - Produces local necrosis and thereby stimulates the growth of the organism

● **Non-spasmogenic toxin**
 - Binds to the neuromuscular junction but its function is unknown
C. tetani: tetanus

- The organism (spore) enters wounds (deep puncture wounds) often with soil or contaminating bacteria in wounds
 → May cause necrosis in the surrounding tissues
 → Reduce the oxygen tension (blood can’t come)
 → Allow the germination and growth of C. tetani
 → Autolysis of bacterial cells (bacterial death)
 → Toxin is released from the bacteria (toxin is a protease)
 → Toxin is absorbed
 1. Ascending tetanus
 - Toxin is absorbed by the motor nerve
 → moves to the CNS
 2. Descending tetanus (usual type in horses and humans)
 - Too much toxins for the surrounding nerves to take up
 → Toxin disseminates to the bloodstream → CNS

C. tetani: tetanus

- Incubation period: one to several weeks
- Localized stiffness at the region of the infected wound
 → General stiffness

- **Species affected**
 - Horses and humans: highly sensitive
 - Ruminants and pigs: moderately susceptible
 - Dogs: relatively resistant
 - Cats: resistant
 - Poultry: quite resistant

Are you scared horsey!
C. tetani: tetanus

- Horses
 - Generalized stiffness in horses (Stiffness of leg muscles) → ‘saw-horse’ stance
 - Spasms
 - Spasms of masticatory tissues → 'lockjaw'
 - Spasms of the neck and back muscle
 - Extension of the head and neck
 - Spasms disturb circulation and respiration
 → increase heart and respiratory rates
- Sheep, goats, and pigs: Often fall to the ground
- Dogs and cats: localized tetanus near a wound

C. tetani: Treatment

- Diagnosis
 - Clinical signs
 - Detection of toxins in the affected animals
 - If the wound is apparent → gram staining of bacteria
- Treatment
 - Antitoxin
 - Penicillin: In large doses. Antibiotic is not very effective after the onset of clinical signs
 - Muscle relaxants help to control the muscle spasms
- Vaccination
 Toxoid administration is routine in humans, horses, and lambs
C. botulinum: General

- **Morphology**
 - Typical large rod
 - Spores former

- **Habitat**
 - Soils, lake and sea sediments
 - but different bacterial types are distributed in various habitats
 - Type A & B: soil
 - Type C & D: appear to be obligate parasites of animals
 - Type E: sea or lake sediments (bacteria grow in dead fish)
 - Food: dead fish, contaminated meat, fruits and vegetables, honey

- Food poisoning in humans, domestic animals, and waterfowl
- Over half the cases of human botulism in the U.S. are in infants

C. botulinum: Botulism

- Botulinum toxin
 - The most potent biological toxin known
 - Bacterial cell lysis
 - Release of the toxin
 - The toxin is absorbed into the blood and lymph
 - Carried to the peripheral nervous system
 - Hydrolysis of synaptobrevins
 - Irreversible interference with the release of neurotransmitter (acetylcholine)
 - Flaccid paralysis

- Clinical signs
 - Vision disturbance
 - Paralysis of muscles
 - Death results from paralysis of respiratory muscles
C. botulinum: Toxin

- Types C and D
 - Cause most outbreaks in domestic animals
 - Transmitted by bacteriophages

- Type E
 - The most acute
 - Results in the highest mortality rate

- Most of the toxins are readily destroyed by boiling 3 min or heating to 80°C for 5 minutes
C. botulinum: Botulism

- **Limberneck**
 - A term used to describe botulism in birds
 - Ducks and other aquatic birds that feed on the vegetation at the bottom of ponds and lakes
 - They develop flaccid paralysis of the neck
 - The buried carcass is rediscovered and ingested by chickens → there are occasional multiple deaths
 - Affected birds may recover without treatment
 - Antibiotic treatment: bacitracin or streptomycin → not successful

![Flaccid Paralysis](image)

C. botulinum: Transmission

- Ingestion of “preformed toxin” → causes botulism in animals and humans

- Toxin may be produced in:
 - Decaying carcasses
 - Improperly preserved foods

- Human botulism in the U.S. is most often associated with canned vegetables (particularly green beans) and to a lesser extent with canned meats

- Forage poisoning in horses due to ingestion of the toxin in poor quality feed or animals
 - e.g. Rabbits killed in the mowing process → The organism multiplies in the carcass → Toxin is produced
C. botulinum

- **Vaccination**
 - Toxoid is used in high risk populations
 - Have to have the toxoid specific for the type of toxin that produces disease
 - Immunization of cattle with types C and D toxoid has proved successful

- **Diagnosis**
 - Demonstrate the toxin in serum, intestinal contents and feed

- **Treatment**
 - Polyvalent antitoxin is available for use in humans
 - Treatment of ducks and mink with type C antitoxin is often successful
 - Antitoxin is rarely used in cattle

Histotoxic Clostridia
Clostridial myonecrosis: Gas gangrene

- **Gas gangrene**
 - Tissue necrosis always caused by microorganisms particularly Clostridia
 - Entry of the organisms into wounds or damaged tissues with foreign objects such as soil
 - Tissue necrosis reduces blood (oxygen) supply:
 - low oxygen promotes germination of the spores
 - The bacteria multiply
 - The toxin tends to travel along muscle planes and thus spreads to adjacent tissues
 - Clostridia accumulate “gaseous metabolic byproducts” in necrotic tissues
 - thus, called “gas gangrene”
C. chauvoei: General

- **Morphology**
 - Typical large rod
 - Usually singly or in short chains
 - Motile

- **Natural habitat**
 - Intestines of cattle and sheep
 - Exists in the soil as spores

- **Transmission**
 - Tissues and wounds are seeded with spores

- **Toxins:**
 - α-toxin is lethal, necrotizing and hemolytic
 - δ-toxin is a hemolysin

- **Disease:**
 - Blackleg in young ruminants especially young cattle

C. chauvoei: Disease

- **Blackleg**, necrotizing myositis
 - **Main hosts**
 - Usually affects calves (3-24 months) but may affect older animals
 - Sheep
 - High fever, anorexia, lameness, swelling due to “gas accumulation”, sudden death
 - The large muscle masses of the limbs, back and neck are frequently affected: swelling usually occur in hind limb

- **Diagnosis**
 - Clinical signs and very characteristic postmortem lesions
 - Culture • FA

- **Vaccination:** killed vaccines

- **Treatment:** Penicillin in the early stages
C. septicum: Malignant edema

- **Habitats:** Soil, intestinal contents of animals (including humans)

- **Cause of malignant edema**
 - an acute, generally fatal toxemia in cattle, horses, sheep, and pigs of all ages
 - Organism enters via wounds or umbilicus
 - Fever and soft swelling around wound → Swelling rapidly spreads
 - There are gelatinous intermuscular exudates with gas (little or no gas is produced unlike blackleg)
 - The lesion looks dark brown to black
 - Rapid death (within 24 hours)

C. septicum: Braxy

- **Braxy** is a hemorrhagic and necrotic abomasitis in sheep
 - Often occur in young sheep
 - Edema, hemorrhage, and sometimes necrosis of the abomasum and anterior small intestine
 - Spores in abomasum cause disease
 - Associated with eating frozen grass
 : frozen food damages localized area in abomasum
 - High mortality, but rare in Canada and US

- **Toxins**
 1. α-toxin: oxygen-stable hemolysin associated with malignant edema
 2. β-toxin: DNase, leukocidin /
 3. γ-toxin: hyaluronidase
 4. δ-toxin: oxygen-labile hemolysis
C. septicum: Diagnosis & Treatment

- **Diagnosis**
 - Culture of the organism can be done
 - Fluorescent antibody testing of the tissues is rapid and efficient

- **Vaccination**
 - Killed vaccines

- **Treatment:** Penicillin, Tetracycline early

C. novyi: General & Type A

- **General**
 - One of the largest clostridia
 - More oxygen sensitive than other clostridia

- **Habitats:** soil and intestinal tract of herbivores

- **Type A**
 - **Bighead**
 - Rams that fight and get head wounds
 - The organism enters via wounds
 - Edema rapidly spreads in the head and neck

 - **Gas gangrene**
 - Cattle, sheep, and humans
 - The organism enters via wounds
 - Legions are similar to those of malignant edema (*C. septicum*)
 - Sudden death
C. novyi: Type B & C

- **Type B**
 - **Black disease** (Infectious necrotic hepatitis)
 - Sheep and occasionally in cattle
 - Characterized by darkening of the underside of the skin due to venous congestion
 - Fatal
 - Dormant spores germinate in liver tissues
 → disseminate α, β-toxins (cardiotoxic, histotoxic & hepatotoxic)
 → produce edema, focal hepatic necrosis
 - Liver fluke (*Fasciola hepatica*) predisposes the disease
 (see type D)
 - Vaccination: Killed vaccines
 - Treatment: Penicillin may be of help in cattle but the disease course is very rapid once clinical signs occur
- **Type C**: avirulent

C. novyi type D = C. haemolyticum

- *C. novyi* type D is also called *C. haemolyticum*
- Pathogenesis is similar to type B
 - Hepatitis, intravascular hemolysis, hemorrhage
 - Causes bacillary hemoglobinuria (“redwater disease”)
 - Cattle, deer, and sometimes sheep
- Occasionally seen in western Canada

Decolorized urine by hemoglobinuria

Redwater, AB, Canada
C. haemolyticum: Pathogenesis

- Spores of the organism originate in the intestine, migrate to the liver and remain there in a dormant state.
 - The liver fluke (Fasciola hepatica) migrates through the liver and creates a favorable environment (necrosis) for the germination of the spores already present.
 - The organisms multiply and produce β-toxin.
 - The toxin causes hepatic necrosis and is absorbed into the blood.
 - Cause massive intravascular hemolysis and capillary damage (lysis of 40-50% of the RBC).
 - Fever, hemoglobinuria (hemoglobin is passed in the urine); it is called “redwater” disease.
- Fatality rate: 90-95%; Death is due to anoxemia (abnormal reduction in the oxygen content of the blood).

C. haemolyticum: Diagnosis & Treatment

- **Diagnosis:**
 - Culture and toxin demonstration in the liver.
 - Inoculation of Guinea pigs with the liver tissue → death in 1-2 days.

- **Vaccination:**
 - Killed multivalent vaccines.

- **Treatment:**
 - Antiserum and large doses of intravenous penicillin.
 - But, no effective treatment for C. novyi infections.
C. sordellii

- Habitat: Soil and intestine of domestic animals
- Causes myonecrosis (gas gangrene) in cattle, sheep and horses
- Sometimes found in the intestines of cattle with “sudden death syndrome”
- Enters via wounds
 - Flulike symptoms
 - Edema begins locally and spread rapidly
 - Mostly die rapidly

C. perfringens type A

- Cause myonecrosis and gas gangrene
- Type A is mostly involved

C. perfringens will start later!
Histotoxic clostridia: Summary

<table>
<thead>
<tr>
<th>Species</th>
<th>Major hosts</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. chauvoei</td>
<td>Sheep, cattle</td>
<td>Blackleg</td>
</tr>
<tr>
<td>C. septicum</td>
<td>Sheep, cattle</td>
<td>Malignant edema</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Abomasitis (Braxy)</td>
</tr>
<tr>
<td>C. novyi type A</td>
<td>Sheep, goats</td>
<td>Wound infections (Bighead)</td>
</tr>
<tr>
<td>C. novyi type B</td>
<td>Sheep, cattle</td>
<td>Infectious necrotic hepatitis (Black disease)</td>
</tr>
<tr>
<td>C. novyi type D</td>
<td>Cattle</td>
<td>Bacillary hemoglobinuria (Redwater)</td>
</tr>
<tr>
<td>C. novyi type D (C. haemolyticum)</td>
<td>Cattle</td>
<td>Bacillary hemoglobinuria (Redwater)</td>
</tr>
<tr>
<td>C. sordellii</td>
<td>Sheep, cattle</td>
<td>Myonecrosis, enteritis</td>
</tr>
<tr>
<td>C. perfringens type A</td>
<td>All warm-blooded</td>
<td>Myonecrosis, gas gangrene</td>
</tr>
</tbody>
</table>